

(AUTONOMOUS) (Affiliated to Bharathidasan University) (Accredited with "A" Grade by NAAC; An ISO 9001:2015 Certified Institution) SUNDARAKKOTTAI, MANNARGUDI – 614016. TAMILNADU, INDIA.

B.Sc., MATHEMATICS COURSE STRUCTURE UNDER CBCS

(For the candidates admitted in the academic year 2021–2022)

ELIGIBILITY: A Pass in 10+2 with Mathematics as one of the core subject

					Inst.		Exam	Marks			
em	art	Nature of the Course	Course Code	Title of the Course	Hours/	Credit	Hours	CIA	ESE	Total	
Ň	Р				Week						
	т	Language Course (LC)-L	211 C101	Ikkala Ilakkiyam	6	3	3	25	75	100	
	-	Tamil*/Other Languages ** #	21120101	ikkala hakkiyani	0	5	5	23	15	100	
	II	English Language Course	21ELC101	Language through	6	3	3	25	75	100	
		(ELC) – I		Literature I (Prose and							
				Communication Skills)							
		Core Course (CC)– I	21MA101	Differential and Integral	5	4	3	25	75	100	
т			2100101	Calculus	5	•	5	20	15	100	
1	III	Core Course (CC) – II	21MA102	Trigonometry and Series	4	4	3	25	75	100	
		First Allied Course (AC) – I	21APY101	Allied Physics – I	4	3	3	25	75	100	
		First Allied Course (AP) – II	21APY102P	Allied Physics Practical – I	3	2	3	40	60	100	
	IV	Value Education		Value Education	2	2	3	25	75	100	
			TOTAL		30	21				700	
	I	Language Course (LC) –	21LC201	Idaikkala	6	3	3	25	75	100	
	_	II-Tamil*/Other	2120201	Ilakkiyamum	-	_	_				
		Languages** #		Pudhinamum							
	П		21FLC201	I anguage through	6	3	3	25	75	100	
		English Language Course	21220201	Literature II (Poetry and		U	U			100	
II		(ELC) - II		Communication Skills)							
		Core Course (CC) – III	21MA203	Probability & Statistics	6	5	3	25	75	100	
		Core Practical (CP) – I	21MA204P	Practical - Statistics	3	3	3	25	75	100	
	III	First Allied Course (AC)– III	21APY203	Allied Physics – II	4	3	3	25	75	100	
		First Allied Course (AP) – IV	21APY204P	Allied Physics Practical – II	3	2	3	40	60	100	
	IV	Environmental Studies		Environmental Studies	2	2	3	25	75	100	
		TOTAL				21				700	
	т	Language Course (LC) -III			6	3	3	25	75	100	
	1	Tamil*/Other Languages ** #			0	5	5	25	15	100	
					-						
	П	English Language Course			6	3	3	25	75	100	
		(ELC) – III									
III		Core Course (CC) – IV			4	4	3	25	75	100	
		Core Course (CC) – V			5	4	3	25	75	100	
	111	Second Allied Course (AC) –I			4	4	3	25	75	100	
		Second Allied Course (AP) –			3	2	3	40	60	100	
	IV	II Non Major Elective - I			2	2	3	25	75	100	
	11				-	-	5	23	15	100	
			TOTAL		a a						
					30	22				700	

u	ţ			G G J		Inst.		Exam	Marks		Totai
Sen	Par	Nature of the C	Course	Course Code	Title of the Course	Hours/	Credit	Hours	CIA	ESE	
						week	2				
	1	Language Course (LC) -IV -			6	3				
		Tamil* /Other Lang	guages **								
		#									
	П	English Language				6	3	3	40	60	100
Ι		Course(ELC) -IV									
		Core Course (CC) -	- VI			4	4	3	25	75	100
		Core Course (CC) -	– VII			4	4	3	25	75	100
	III	Second Allied Court	se (AC) –			3	2	3	25	75	100
		III									
		Second Allied Cour	se (AP) –			3	2	3	40	60	100
		IV						-			100
	IV	Non Major Elective	II .			2	2	3	25	75	100
		Skill Based Elective	e – 1	ТОТАІ		2	2	3	25	75	100
						50	<u> </u>	2	25	75	100
		Core Course (CC) -	VIII IX			0	4 5	3	25	75	100
		Core Course (CC) –	- X			5	<u> </u>	3	25	75	100
		Core Practical (CP)) – II			2	2	3	40	60	100
	III	Major Based Electiv	ve – I			5	5	3	25	75	100
\mathbf{V}		Skill Based Elective	e – II			2	2	3	25	75	100
		Skill Based Elective	e – III			2	2	3	25	75	100
	IV	Soft Skill Developm	nent			2	2	3	25	75	100
				TOTAL		30	26				800
		Core Course (CC) -	- XI			6	5	3	25	75	100
		Core Course (CC) –	- XII			6	5	3	25	75	100
		Core Course (CC) -	- XIII			6	5	3	25	75	100
VI	ш	Major Based Electiv	ve – II			5	5	3	25	75	100
		Core Course (CC) –	- XIV		Project	6	6	-	-	-	100
	V	Gender Studies				1	1	3	25	75	100
		Extension Activities	5			-	1	-	-	-	-
		SWAYAM (EXTRA	A)			20	4				(00
		<u> </u>	'	IUTAL		30	28				600
					JKAND TOTAL	180	140				4300

CURRICULAM DESIGN

LIST OF ALLIED COURSES

ALLIED COURSE I - PHYSICS

ALLIED COURSE II - COMPUTER SCIENCE

Subject	No. of Courses	Total Credits
Language Part – I	4	12
English Part –II	4	12
Core Course	13	57
Core Practical	2	05
Allied Course	4	12
Allied Practical	4	08
Non-Major Elective	2	04
Skill Based Elective	3	06
Major Based Elective	2	10
Project	1	06
Environmental Studies	1	02
Value Education	1	02
Soft Skill Development	1	02
Gender Studies	1	01
Extension Activities	-	01 (Credit only)
Total	43	140

* For those who studied Tamil upto $10^{th} + 2$ (Regular Stream);

+ Syllabus for other Languages should be on par with Tamil at degree level;

those who studied Tamil upto 10^{th} +2 but opt for other languages in degree level under

Part I should study special Tamil in Part IV;

** Extension Activities shall be outside instruction hours.

Note:

		CIA	ESE
1.	Theory	25	75
2.	Practical	40	60

3. Separate passing minimum is prescribed for CIA and ESE

FOR THEORY

The passing minimum for CIA shall be 40% out of 25 marks [i.e. 10 marks] The passing minimum for ESE shall be 40% out of 75 marks[i.e. 30 marks]

FOR PRACTICAL

The passing minimum for CIA shall be 40% out of 40 marks [i.e. 16 marks] The passing minimum for ESE shall be 40% out of 60 marks [i.e. 24 marks]

Semester	Part	Course	Title of the Paper
III		NME - I	
IV		NME -II	

NON MAJOR ELECTIVE (NME) OFFERED BY THE DEPARTMENT

1 >

(AUTONOMOUS) (Affiliated to Bharathidasan University) (Accredited with "A" Grade by NAAC; An ISO 9001:2015 Certified Institution) SUNDARAKKOTTAI, MANNARGUDI – 614016.

TAMILNADU, INDIA.

DEPARTMENT OF MATHEMATICS

B.Sc., MATHEMATICS

(For the candidates admitted in the academic year 2021–2022)

Question Paper Pattern- (Theory)

Max time: 3 Hours

Max Marks: 75

Section – A (10 x 2 = 20)

Answer all the questions Answer in One or Two sentences each

1.	
2. 5	Unit I
3. ך	
4. ∫	Unit II
5. 〕	
6. J	Unit III
7.]	
8. J	Unit IV
9. }	
لر 10.	Unit V
	Section $-B$ (5 x 5 = 25)
	Answer all the questions
	Each answer should not exceed 500 words
11. a (or)	
h	Unit I
12 a (or)	Cint I
h	Unit II
13. a (or)]	
b	Unit III
14. a (or)	
b J	Unit IV
ר (or) 15. a	
b }	Unit V
2	
	Section – C (3 x 10 = 30) A normal sum THEEE quantians in 1200 monds
	Answer any <u>THKEE questions</u> in 1200 words

- 17. Unit II
- 18. Unit III
- 19. Unit IV
- 20. Unit V

(AUTONOMOUS)

SUNDARAKKOTTAI, MANNARGUDI- 614016

(For the Candidates admitted in the academic year 2021 - 2022)

DEPARTMENT OF MATHEMATICS

B.Sc., MATHEMATICS

Semester: I- CC-I: Differential and Integral Calculus Ins. Hrs./Week: 5 **Course Credit: 4 Course Code:**

OBJECTIVES

- To inculcate the basics of differentiation and its applications
- To introduce the notion of curvature and polar coordinates
- To inculcate the basics of integration and its applications

UNIT-I: Differentiation

Basic Formulae on Differentiation - Methods of Successive Differentiation - Leibnitz's Theorem and its applications - Increasing and decreasing functions - Maxima and Minima of function of two variables.

UNIT-II : Curvature

Curvature - Definition - Radius of Curvature - Radius of curvature in Cartesian coordinates-Radius of curvature in polar coordinates - Centre of curvature - Formula - Problems.

UNIT-III : Integration

Basic Formulae on Integration - Integration of rational algebraic functions - Integration of Irrational functions –Integral of type $\int \frac{dx}{a+bcosx}$ - Problems.

UNIT-IV : Definite integrals

Definite integral- Properties on definite integrals - Integration by Parts -Derivation of the formula for integration by parts- Problems using the formula for integration by parts-Reduction Formula for integration.

UNIT-V : Double integrals

Introduction to double integrals - Problems based on double integrals- Changing the order of Integration – Triple Integrals- Properties- Examples.

COURSE OUTCOME

The students will be able to

- 1. Learn the basics of differentiation and their applications.
- 2. Learn the notion of curvature and polar coordinates.
- 3. Understand the basic concepts of double and triple integrals
- 4. Solve problems using various methods in integration.
- 5. Learn the concepts of definite integrals.

(16 Hours)

(14 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

Total Lecture Hours - 75

TEXT BOOK(S)

- 1. Narayanan .S and Manicavachagam Pillai T.K. 2011.Calculus Volume I. S. Viswanathan Pvt. Ltd., Chennai.
- 2. Narayanan.S and Manicavachagam Pillai. T.K. 2011.Calculus Volume II. S.Viswanathan (Printers & Publishers) Pvt. Limited, Chennai.

UNIT- I	Chapter 3	:	Sec. 1.1 to 2.2
	Chapter 4	:	Sec. 2.1, 2.2 &
	Chapter 5	:	Sec. 1.1 to 1.5 of [1]
UNIT- II	Chapter 10	:	Sec. 2.1 to 2.4 & 2.6 of [1]
UNIT -III	Chapter 1	:	Sec. 7 to 10 of [2]
UNIT -IV	Chapter 1	:	Sec. 11, 12 & 13 of [2]
UNIT -V	Chapter 5	:	Sec. 2.1, 2.2 & 4 of [2]

REFERENCE BOOK(S)

- 1. Courante R and Shane Mc. 1988. Wiley online library, North America.
- 2. Khanna M.L. 1994. Integral Calculus, 19 th Edition. Jai Prakash Nath & Co, Meerut.
- 3. Piskunov N. 1996. Differential and Integral Calculus, Vol 1. CBS Publishers and distributors, New Delhi.
- 4. Singh U.P, Srivastava R.J and Siddiqui N.H. 2003. Calculus. Dominant Publishers and Distributors, New Delhi.
- 5. Gorakh Prasad. 2016. Differential Calculus. Rashi Kansal (Pothishala), Kanpur.

E- RESOURCES

- 1. https://www.slideserve.com/jerod/hyperbolic-functions?fitview=true#ssShare
- 2. https:// www.slideshare.net/informaticaacademy/ successive differentiation
- 3. http://www.math.odu.edu/~jhh/counter10.html
- 4. https://ocw.mit.edu/ans7870/resources/Strang/Edited/Calculus/Calculus.pdf
- 5. http://www.ru.ac.bd/wp-content/uploads/sites/25/2019/03/205_07_-Courant-Differentialand-Integral-Calculus-Volume-11988.pdf

(AUTONOMOUS)

SUNDARAKKOTTAI, MANNARGUDI- 614016

(For the Candidates admitted in the academic year 2021 - 2022)

DEPARTMENT OF MATHEMATICS

B.Sc., MATHEMATICS

Semester: I-CC-II: Trigonometry and Series

OBJECTIVES

Ins. Hrs./Week: 4

- To understand the basic concepts of Trigonometry •
- To know the concepts of hyperbolic functions •
- To distinguish the concepts of binomial, exponential theorem and logarithmic series

UNIT-I : Expansions of Trigonometric Functions

Introduction of Trigonometric Functions - Basic Definitions - Trigonometric Functions -Expansions of sin (nx), $\cos(nx)$ and $\tan(nx)$ – Expansions of $\sin^n x$ and $\cos^n x$ – Expansions of $\sin(x)$, $\cos(x)$ and $\tan(x)$ in powers of x – Problems.

UNIT-II : Hyperbolic functions

Introduction of Hyperbolic Functions- Basic Definitions - Hyperbolic functions - Circular functions - Relation between hyperbolic and Circular functions - Inverse hyperbolic functions -Problems.

UNIT-III : Summation of Trigonometric series

Introduction of Trigonometric Series- Basic Definitions - Logarithm of a complex number -Trigonometric Series - Summation of Trigonometric Series - Difference Method - Angles in Arithmetic Progression Method.

UNIT-IV : Binomial Series

Introduction of Binomial Series - Binomial Theorem for a rational index - Some important particular cases of the binomial expansions – Sign of terms in binomial expansions – Numerical greatest term – Method of splitting functions into partial fractions – Application of the binomial theorem to the summation of the series - Sum of coefficients.

UNIT-V : Exponential and Logarithmic series

Introduction of Exponential and Logarithmic Series - Exponential limit - The exponential Theorem - Summation - The Logarithmic Series - Modification of the Logarithmic Series-Euler's Constant – Summation.

COURSE OUTCOME

The students will be able to

- 1. Learn the expansions of trigonometric functions.
- 2. Learn the Hyperbolic and Inverse hyperbolic functions.
- 3. Learn the logarithm of a complex number, Summation and angles.
- 4. Understand the concept of binomial theorem.
- 5. Understand the concept of Exponential and Logarithmic theorem.

(13 Hours)

Total Lecture Hours - 60

(10 Hours)

(11 Hours)

(14 Hours)

(12 Hours)

Course Code:

TEXT BOOK(S)

- 1. S.Arumugam & others, 1999. Trigonometry and Fourier series, New Gamma Publications
- 2. Manicavachagam Pillai T.K. Natarajan T. and Ganapathy K.S. 2007. Algebra Volume-1. Viswanathan S. Pvt. Ltd, Chennai.

UNIT – I Chapter 1 : Sec. 1.2 to 1.4 of [1]

UNIT – II Chapter 2 : Sec. 2.1 & 2.2 of [1]

UNIT – III Chapter 3 : Sec. 3.1

Chapter 4 : Sec. 4.1, 4.2 of [1]

UNIT – IV Chapter 3 : Sec. 5 to 11 of [2]

UNIT – V Chapter 4 : Sec. 1 to 3,5 to 9 of [2]

REFERENCE BOOK(S)

- 1. Francis Raj M.I. 2004. Algebra. Margham Publications, Chennai.
- 2. Khanna M.L. 1994. Integral Calculus. 19th Edition. Jai Prakash Nath & Co, Meerut.
- 3. Surya Narayan Iyer S. 2002. Algebra. Margham Publications, Chennai.
- 4. Kandasamy and K.Thilagavathy. 2004. Mathematics, Volume I. S.Chand and Company Ltd., New Delhi
- 5. Kandasamy P. and Thilagavathi K. 2004. Mathematics for Branch I: Vol I and Vol II. S.Chand and Company Ltd., New Delhi.

E_RESOURCES

- 1. http://www.math.odu.edu/~jhh/counter10.html
- 2. www.math.columbia.edugrc.nasa.gov
- 3. http://www2.trinity.unimelb.edu.au/~rbroekst/Notes/Ch1.pdf
- 4. https://learn.lboro.ac.uk/archive/olmp/olmp_resources/pages/workbooks_1_50_ja n2008/Workbook16/16_3_binomial_series.pdf
- 5. https://www.flowsurfv3.net/c.Trigonometry-Schaum-s.pdf

(AUTONOMOUS)

SUNDARAKKOTTAI, MANNARGUDI- 614016 (For the Candidates admitted in the academic year 2020 – 2021)

B.Sc., MATHEMATICS

Semester: II-CC-III: Probability and Statistics Course Credit: 5 Course Code:

OBJECTIVES:

Ins. Hrs./Week: 6

- To learn the basic concepts of Probability.
- To learn Random variables, Probability distributions and their applications.
- To study the basic concepts of Statistics, Correlation and Regression.

UNIT-I: Theory of Probability

Introduction – Short history – Basic terminology – Mathematical probability – Limitations of Mathematical probability - Statistical probability – Limitations of Empirical probability. Definition of probability - Some problems.

UNIT –II: Random variables and Distribution functions

Introduction – Some theorems on Random variables – Distribution function – Properties of Distribution function - Discrete Random variables - Probability Mass function – Discrete Distribution function - Continuous Random variables - Probability Density function.

UNIT –III: Discrete Probability Distributions

Introduction: Discrete uniform distribution – Bernoulli distribution - Binomial and Poisson distributions: Moment generating functions of Binomial and Poisson distributions - Additive properties of Binomial and Poisson distributions - Recurrence relations for the moments of Binomial and Poisson distributions.

UNIT- IV: Origin and development of statistics

Statistics defined -- Importance and scope of statistics – Limitations of statistics – Distrust of statistics – Role of computers in solving statistics problems - Frequency distribution - Continuous Frequency distribution - Graphical representation of a frequency distribution – Histogram – Frequency polygon.

UNIT –V: Correlation and Regression

Introduction - Meaning of Correlation - Scatter diagram - Karl Pearson's coefficient of correlation - Limits for correlation coefficient - Assumptions underlying Karl Pearson's correlation coefficient. Linear regression - Regression coefficients – Properties of regression coefficients - Problems for finding correlation and regression coefficients.

Total Lecture Hours – 90

10

(18 Hours)

(17 Hours)

(18 Hours)

(19 Hours)

(18 Hours)

The students will be able to

- 1. Understand the foundations of probability theory.
- 2. Understand the different types of distribution functions.
- 3. Apply probability distributions to a variety of problems in various diversified fields.
- 4. Know a short historical development of mathematical statistics.
- 5. Derive important properties of correlation and regression coefficients.

TEXT BOOK(S):

1. Gupta S.C, Kapoor V.K. 2002. Fundamentals of Mathematical statistics. Sultan Chand & sons. Educational Publishers. New Delhi.

UNIT – I	Chapter 3:	Sec. 3.1 to 3.5(3.5.1)
UNIT – II	Chapter 5:	Sec. 5.1 to 5.4(5.4.1)
UNIT – III	Chapter 8:	Sec. 8.1 to 8.4(8.4.2,8.4.6 & 8.4.7) &
		8.5(8.5.4,8.5.5 & 8.5.8)
UNIT – IV	Chapter 1:	Sec. 1.1 to 1.6
	Chapter 2:	Sec. 2.2 & 2.3(2.3.1 & 2.3.2)
UNIT – V	Chapter 10:	Sec. 10.1 to 10.4(10.4.1 & 10.4.2)
	Chapter 11:	Sec. 11.1 & 11.2(11.2.1 & 11.2.2)

REFERENCE BOOK(S):

- 1. Das G. 2008. Statistical Methods. First Edition. McGraw Hill Education (India) Pvt. Ltd.
- 2. Jim Pitman. 1996. Probability. Narosa Publishing House. New Delhi 110017.
- 3. Murray R. Spiegel, John Schiller, Alu Srinivasan R. 2012. Probability and Statistics. Fourth Edition. McGraw Hill Education (India) Pvt. Ltd.
- 4. Pillai R.S.N and Bagavathi V. 2016. Statistics Theory and Practice. Eight Edition. S Chand & Company Ltd. New Delhi 110055.
- 5. Sharma A. K. 2005. Text book of Elementary statistics. Discovery Publishing House. New Delhi 110002.

E-RESOURCES:

- 1. https://mason.gmu.edu/~jgentle/books/MathStat.pdf.
- 2. <u>http://www.crectirupati.com/sites/default/files/lecture_notes/P%20%26%20S%20Lecture%20Notes.pdf</u>.
- 3. <u>http://wiki.stat.ucla.edu/socr/index.php/Probability_and_statistics_EBook.</u>
- 4. <u>https://www.bcebhagalpur.ac.in/wp-content/uploads/2020/04/Probability-and-Statistics.pdf</u>.
- 5. http://bio5495.wustl.edu/Probability/Readings/DeGroot4thEdition.pdf.

(AUTONOMOUS)

SUNDARAKKOTTAI, MANNARGUDI- 614016

(For the Candidates admitted in the academic year 2021 – 2022)

DEPARTMENT OF MATHEMATICS

B.Sc., MATHEMATICS

Semester: II-CP-I: Practical - Statistics

Ins. Hrs./Week: 3

Course Credit: 3

Course Code:

OBJECTIVES:

- To study some measures of central tendency in statistics.
- To study some measures of dispersion in statistics.
- To learn Probability Distributions and their applications.

UNIT- I: Measures of Central Tendency

Arithmetic mean – Properties of Arithmetic mean – Merits and Demerits of Arithmetic mean – Weighted Arithmetic Mean-Median – Medians for continuous Frequency distribution – Merits and Demerits of median - Mode – Mode for continuous frequency distribution – Merits and Demerits of mode - Geometric mean – Geometric mean of the combined group - Merits and Demerits of Geometric mean - Harmonic mean - Merits and Demerits of Harmonic mean.

UNIT –II: Measures of Dispersion

Range – Quartile deviation – Mean deviation – Standard deviation and Root mean square deviation – Different formulae for calculating variance – variance of the combined series.

UNIT –III: Mathematical Expectation & Generating Functions

Moments of Bivariate Probability Distributions Conditional Expectation and Conditional variance – Moment Generating function – Some Limitations of moment Generating function – Properties of Moment Generating function - Uniqueness Theorems of Moment Generating function.

UNIT- IV: Calculation of the Correlation Coefficient (8 Hours)

Calculation of the correlation coefficient for a bivariate frequency distribution – Probable error of Correlation coefficient - Rank correlation – Spearman's Rank correlation coefficient – Tied ranks – Repeated ranks.

UNIT –V: Applications of t- Distributions

t - Test for single mean, t - Test for Difference of means, Paired t - Test for difference of means -t-Test for testing the significance of an observed sample correlation coefficient -t-test for Testing the significance of an observed Regression coefficient-t-test for Testing the significance of an observed Regression coefficient-t-test for Testing the significance of an observed Regression coefficient.

Total Lecture Hours - 45

(10 Hours)

(8 Hours)

(10 Hours)

(9 Hours)

ANNAROUD S

The students will be able to

- 1. Know the relationship between different measures of central tendency.
- 2. Define and compute different measures of dispersion.
- 3. Obtain moments of bivariate probability distributions.
- 4. Distinguish between the correlation coefficient and Spearman's rank correlation coefficient.
- 5. Understand the applications of t-distributions.

TEXT BOOK(S):

1. Gupta S.C. Kapoor V.K. 2002. Fundamentals of Mathematical statistics. Sultan Chand & sons. Educational Publishers. New Delhi.

- UNIT I Chapter 1: Sec. 2.5 to 2.9(2.9.1)
- UNIT II Chapter 2: Sec. 2.13(2.13.1 to 2.13.4)
- UNIT III Chapter 6: Sec. 6.8 & 6.9 Chapter 7: Sec. 7.1 (7.1.1. to 7.1.3)
- UNIT IV Chapter 10: Sec. 10.5 to 10..7(10.7.1 to 10.7.3)
- UNIT V Chapter 16: Sec. 16.3 (16.3.1to 16.3.6)

REFERENCE BOOK(S):

- 1. Jim Pitman. 1996. Probability. Narosa Publishing House. New Delhi 110017.
- 2. Murray R. Spiegel, John Schiller, Alu Srinivasan R. 2012. Probability and Statistics. Fourth Edition. McGraw Hill Education (India) Pvt. Ltd.
- 3. Pillai R.S.N and Bagavathi V. 2010. Practical statistics. S Chand & Company Ltd. New Delhi 110055.
- Pillai R.S.N and Bagavathi V. 2016. Statistics Theory and Practice. 8th Edition. S Chand & Company Ltd. New Delhi – 110055.
- 5. Sharma A. K. 2005. Text book of Elementary statistics. Discovery Publishing House. New Delhi 110002.

E-RESOURCES:

- 1. <u>https://mathcs.clarku.edu/~djoyce/ma218/</u>.
- 2. <u>http://www.crectirupati.com/sites/default/files/lecture_notes/P%20%26%20S%20Lecture%20 Notes.pdf</u>
- 3. http://wiki.stat.ucla.edu/socr/index.php/Probability_and_statistics_EBook.
- 4. <u>https://www.bcebhagalpur.ac.in/wp-content/uploads/2020/04/Probability-and-</u><u>Statistics.pdf</u>.
- 5. http://bio5495.wustl.edu/Probability/Readings/DeGroot4thEdition.pdf.

(AUTONOMOUS)

SUNDARAKKOTTAI. MANNARGUDI- 614016 (For the Candidates admitted in the academic year 2021 - 2022)

DEPARTMENT OF MATHEMATICS

ALLIED MATHEMATICS-I (For Physics & Chemistry)

Semester: I-AC-I : Calculus

Course Credit: 3

Ins. Hrs. / Week: 4

OBJECTIVES

- To train the students to learn the basics related to their major courses
- To train the students in the basic concepts of Integrations and Differentiation •
- To introduce the notion of Curvature, Radius and Centre of curvature

UNIT-I: Successive Differentiation

Basic Formulae on Differentiation - Successive Differentiation - Definition with Examples nth derivative of standard functions (Derivation not needed) - Leibnitz Theorem (proof not needed) and its applications - Simple problems.

UNIT-II: Curvature

Total differential coefficients (proof not needed) - Definition - Curvature and Radius of curvature in Cartesian only (proof not needed) - Centre of curvature (proof not needed) -Definition with Examples - Related problems.

UNIT – III : Evaluation of Integrals

Evaluation of Integrals of types 1) $\int \frac{px+q}{ax^2+bx+c} dx$ 2) $\int \frac{px+q}{\sqrt{ax^2+bx+c}} dx$ 3) $\int \frac{dx}{(x+p)\sqrt{ax^2+bx+c}}$ 4) $\int \frac{dx}{a+b\cos x}$ 5) $\int \frac{dx}{a+b\sin x}$ Integration by trigonometric substitution 1) $\int \sqrt{a^2 - x^2} \, dx$ 2) $\int \sqrt{a^2 + x^2} \, dx$ 3) $\int \sqrt{x^2 - a^2} \, dx$

UNIT-IV : Reduction Formula

General Properties of Definite Integrals - Integration by Parts. Reduction Formula (when n is a positive integer) for

- 1) $\int e^{ax}x^n dx$ 2) $\int x^n \cos x dx$ 3) $\int \sin^n x dx$ 4) $\int \cos^n x dx$ 5) $\int_0^x e^{ax}x^n dx$ 6) $\int_0^{\frac{\pi}{2}} \sin^n x dx$ 7) Without proof $\int_0^{\frac{\pi}{2}} \sin^m x \cos^n x dx$ and illustrations

UNIT –V : Double Integrals

Double Integrals -Definition with Examples - Changing the order of Integration - Triple Integrals (Cartesian only) – Definition with Examples – Related Problems.

Total Lecture Hours-60

(12 Hours)

(13 Hours)

Course Code:

(11 Hours)

(12 Hours)

(12 Hours)

The students will be able to

- 1. Understand the concept of successive Differentiation.
- 2. Learn the notation of curvature and radius of curvature.
- 3. Solve the problems in integration using various methods.
- 4. Understand the concept of properties of definite integrals, integration by parts and reduction formulae.
- 5. Understand the concept of double and triple integrals.

TEXT BOOK(S)

- 1. Narayanan S. and Manicavachagam Pillai T.K. 2003. Calculus Volume I. S.Viswanathan (Printers & Publishers) Pvt. Limited, Chennai.
- 2. Narayanan S. and Manicavachagam Pillai T.K. 2011. Calculus. Volume II. S.Viswanathan (Printers & Publishers) Pvt. Limited, Chennai.

Chapter 3	:	Sec. 1.1 to 1.6, 2.1, 2.2 of [1]
Chapter 8	:	Sec. 1.3 to 1.5 &
Chapter 10	:	Sec. 2.1 to 2.4 of [1]
Chapter 1	:	Sec. 7.3, 7.4, 8, 90f [2]
Chapter 1	:	Sec. 11,12, 13.1 to 13.5 of [2]
Chapter 5	:	Sec. 2.1, 2.2, 4 of [2]
	Chapter 3 Chapter 8 Chapter 10 Chapter 1 Chapter 1 Chapter 5	Chapter 3:Chapter 8:Chapter 10:Chapter 1:Chapter 1:Chapter 5:

REFERENCE BOOK(S)

- 1. Arumugam S. and Issac. 2013. Calculus Volume I. New Gamma Publishing House, Palayamkottai.
- 2. Khanna M.L. 1994. Integral Calculus. 19th Edition. Jai Prakash Nath & Co. Meerut.
- 3. Hari Krishnan. 2013. Calculus. Atlantic Publishers & Distributions Pvt. Ltd., Chennai.
- 4. Singh U.P., Srivastava R.J., and Siddiqui N.H. 2003. Calculus. Dominant Publishers and Distributors, New Delhi.
- 5. Shanthi Narayan and Mittal P.K. 2005. Integral Calculus. S.Chand and Company Ltd., New Delhi.

E_RESOURCES

- $1. file:///C:/Users/ELCOT/Downloads/AnElementaryTreatiseontheDifferential and Integral Calculus _10449393.pdf$
- 2. http://djm.cc/library/Elements_Differential_Integral_Calculus_Granville_edited_2.pdf
- 3. https://www.slideserve.com/jerod/hyperbolic-functions?fitview=true#ssShare
- 4. https:// www.slideshare.net/informaticaacademy/ successive differentiation
- 5. http://www.math.odu.edu/~jhh/counter10.html

(AUTONOMOUS)

SUNDARAKKOTTAI. MANNARGUDI- 614016 (For the Candidates admitted in the academic year 2021 - 2022)

DEPARTMENT OF MATHEMATICS

ALLIED MATHEMATICS- II (For Physics & Chemistry)

Semester: I – AC – II : Algebra and Analytical Geometry (3D)

Course Credit: 2 Ins. Hrs./Week: 3

OBJECTIVES

- To inculcate the basic concepts of Algebra •
- To give depth knowledge of matrices and inculcate habit of problem solving •
- To enable the students to develop their skill in three dimensions

UNIT-I: Binomial and Exponential Series

Introduction about Binomial and Exponential Series - Binomial Theorem to evaluate summation of series - Approximation of the series - Exponential Theorem (Proof not needed) - Summation of series - Related Problems.

UNIT-II: Matrices

Non-Singular, Symmetric, Skew Symmetric, Orthogonal, Hermitian, Skew Hermitian and Unitary matrices - Characteristic equation, Eigen values, Eigen vectors - Cayley Hamilton's Theorem (proof not needed) related problems only - Related Problems.

UNIT–III: The Plane

Standard equation of a plane – Intercept form – Equation of the Plane Passing through the Points - Direction Cosines of the Line which is perpendicular to a plane - Angle between the planes – The ratio in which the plane divides the line joining the points – Equation of a Plane through the line of intersection of two given planes - Related Problems.

UNIT-IV: The Straight Line

Symmetrical form of straight line – Straight line passing through two points – The Condition for the line to be parallel to the plane - Angle between the plane - Conditions for the line Parallel to the plane - Coplanar lines - Shortest distance between two lines - Related Problems.

UNIT-V: The Sphere

Equation of a sphere – Centre and Radius – The Length of the tangent from the point to the Sphere – Equation of a circle on a Sphere - Equation of a sphere Passing through a circle – Intersection of two spheres is a circle – Equation of the Tangent plane to the Sphere - Related Problems.

Total Lecture Hours - 45

3

(11 Hours)

(7 Hours)

(10 Hours)

(8 Hours)

(9 Hours)

Course Code:

The students will be able to

- 1. Learn the binomial theorem and its summation and approximations.
- 2. Understand the types of matrices and its definitions and compute the Eigen value and Eigen vector.
- 3. Learn the angle between planes, bisector planes, perpendicular distance from a point to a plane and intersection of two lines.
- 4. Compute the angle between a line and a plane, length of perpendicular from a point to a line.
- 5. Understand the equation of a Sphere passing through the circle and tangent of the plane to the Sphere.

TEXT BOOKS

- 1. Manicavachagam Pillai T.K., Natarajan T., Ganapathy K.S. 2007. Algebra Volume I, S.Viswanathan Pvt. Limited, Chennai.
- 2. Manicavachagam Pillai.T.K., Natarajan.T., Ganapathy K.S., 2012. Algebra, Volume II, S.Viswanathan Pv.t Limited, Chennai.
- 3. Manicavachagam Pillai T.K., Natarajan T., 2008. Analytical Geometry (3D), S.Viswanathan Pvt. Limited, Chennai.
- UNIT-I Chapter 3 : Sec. 10 and 14 &

Chapter 4 : Sec. 2,3 of [1]

- UNIT- II Chapter 2 : Sec. 1 to 14 and 16.2 to 16.3 of [2]
- UNIT-III Chapter 2: Sec. 1 to 9 of [3]
- UNIT-IV Chapter 3: Sec. 1 to 8 of [3]
- UNIT-V Chapter 4 : Sec. 1 to 8 of [3]

REFERENCE BOOK(S)

- 1. Jain P.K.1991. A Textbook of Analytical Geometry of Three Dimensions, Second Edition. New Age International Private Limited, New Delhi.
- 2. Sannu Rahi. 2009. Algebra, Tata McGraw Hill Publishing Company Limited, New Delhi.
- 3. Shanti Narayan, P.K. Mittal. 2016. Analytical Solid Geometry. S.Chand & Company Private limited, New Delhi.
- 4. Vaishtha A.R. 1990. Analytical Solid Geometry. Krishna Prakashan Media Pv.t Ltd., New Delhi.
- 5. William H. McCrea. 2012. Analytical Geometry of Three Dimensions. Dover Publications, New York.

E-RESOURCES

- 1. https://www.google.com/amp/s/dokumen.tips/amp/documents/free-download-heremanickavasagam-pillai-volume-1pdf-free-download-here-algebra.html
- 2. https://www.academia.edu/19646465/Analytical_solid_geometry_Shanti_Narayan
- $3.\ http://fhscastormath.weebly.com/uploads/1/2/4/7/12476962/chapter11_precal.pdf$
- 4. https://ncert.nic.in/textbook/pdf/lemh205.pdf
- 5. https://pdfbookslibs.com/a-textbook-of-analytical-geometry-of-three-dimensions-2nd.pdf

(AUTONOMOUS)

SUNDARAKKOTTAI, MANNARGUDI- 614016

(For the Candidates admitted in the academic year 2021 - 2022)

DEPARTMENT OF MATHEMATICS

ALLIED MATHEMATICS-III (For Physics & Chemistry)

Semester: II – AC – III: Trigonometry and Fourier series Ins.Hrs./Week: 3 **Course Credit: 2 Course Code:**

OBJECTIVES

- To inculcate the basic concepts of Trigonometry with reference to number system, hyperbolic functions and logarithm of complex number
- To acquire problem solving skills to the students in Fourier series
- To learn the Fourier series expansion of periodic function with the period of 2π

UNIT-I : Demovier's Theorem for Rational Number

Introduction on Number System - Expansion of $\sin n\theta$, $\cos n\theta$, $\tan n\theta$ (n being a positive integer) - Related Problems-Expansion of $\sin^n\theta$, $\cos^n\theta$ -Related Problems-Expansion of $\sin\theta$, $\cos\theta$ and tan θ in terms of powers of θ – Related Problems.

UNIT –II : Hyperbolic Functions

Introduction on Hyperbolic functions - Results - Related Problems - Relation between Hyperbolic and Circular functions-Related Problems-Expansion of Inverse Hyperbolic functions-Related Problems-Separation of real and imaginary parts-Related Problems.

UNIT –III : Logarithm of a Complex Number

Introduction - Logarithm of a complex number - Related Problems - Summation of a series -Related Problems – Difference Method – Related Problems – Angles in Arithmetic Progression method – Related Problems.

UNIT-IV : Fourier series

Fourier Series - Definition - Related Problems - Fourier Series Expansion of Periodic Functions with period 2π - Definition – Related Problems – Odd and Even Functions – Definition-Properties of Odd and Even Functions - Related Problems.

UNIT –V : Half Range Fourier series

Half range sine series – Definition – Related Problems - Half range cosine series – Definition - Related Problems - Change of Interval - Definition - Related Problems.

Total Lecture Hours-45

COURSE OUTCOME

The students will be able to

- 1. Learn the expansion of $\sin n\theta$ and $\cos n\theta$ and its related problems.
- 2. Understand the hyperbolic functions and its relation between hyperbolic and circular functions.
- 3. Understand the summation of series and its methods.
- 4. Understand the concept of Fourier series and familiarizes with odd, even Fourier series with their periodic functions.
- 5. Analyze the half range sine and cosine functions and its change of interval.

(9 Hours)

(6 Hours)

(12 Hours)

(10 Hours)

(8 Hours)

TEXT BOOKS

- 1. Arumugam S, Thangapandi Issac A and Somasundaram A. 1999. Trigonometry and Fourier Series. New Gamma Publications, Palayamkkottai.
- 2. Narayanan S and Manicavachagam Pillay. T.K 2014. Calculus Volume III. Viswanathan Publishing Company, Chennai.

UNIT-I Chapter 1 : Sec. 1.2 to 1.4 of [1] UNIT-II Chapter 2 : Sec. 2.1 and 2.2 of [1] UNIT-III Chapter 3 of [1] Chapter 4 : Sec. 4.1&4.2 of [1] UNIT- IV Chapter 6 : Sec. 1 to 3 of [2] UNIT- V Chapter 6 : Sec. 4 to 6 of [2]

REFERENCE BOOK(S)

- 1. Dyke P.G 2001. An Introduction to Laplace Transforms and Fourier Series. Spinger Verlag, London.
- 2. Gelfand I.F. and Saul M. 2012. Trigonometry. Spinger Verlag, London.
- 3. Jain S.K. 2001. Fourier Series and Fourier Transforms. Sarup and Sons, New Delhi.
- 4. Rawat K.S. 2005. Trigonometry. Sarup and Sons, New Delhi.
- 5. Robert T Seeley. 2006. An Introduction to Fourier Series and Integrals. Dover Publications, New York.

E-RESOURCES

- 1. https://orion.math.iastate.edu/butler/PDF/trig_notes.pdf
- 2. http://users.auth.gr/~siskakis/GelfandSaul-Trigonometry.pdf
- 3. https://lib.alfaisal.edu/pdf/AlgebraAndTrigonometry-LR.pdf
- 4. https://math.mit.edu/~gs/cse/websections/cse41.pdf
- 5. https://fenedebiyat.siirt.edu.tr/dosya/personel/uygulamali-matematik-siirt-201935221347541.pdf

(AUTONOMOUS)

SUNDARAKKOTTAI. MANNARGUDI- 614016 (For the Candidates admitted in the academic year 2021 - 2022)

DEPARTMENT OF MATHEMATICS

ALLIED MATHEMATICS-IV (For Physics & Chemistry)

Semester: II – AC – IV: ODE, PDE and Laplace Transforms Ins. Hrs./Week: 4 **Course Credit: 3 Course Code:**

OBJECTIVES

- To learn the basic concepts of Ordinary Differential Equations and Partial **Differential Equations**
- To learn the concept of linear equation with constant coefficient
- To train the students in problem solving skills of Partial Differential Equations and Laplace Transforms

UNIT-I : Differential Equations of the First Order

Basic Formulae on Differential Equations - Equations of the first order, higher degree differential equations solvable for x - Equations solvable for y - Equations solvable for dy/dx - Clairaut's Form - Related problems.

UNIT –II : Linear Differential Equations with Constant coefficients (12 Hours) Linear differential equations with constant coefficients – Particular Integral– Finding Particular integrals in the cases of e^{kx} , $\sin(kx)$, $\cos(kx)$ (where k is a constant), x^k (where k is a positive integer), and e kx f(x) (where f(x) is any function of x) – Related problems.

UNIT-III : First Order Partial Differential Equations

Formation of Partial differential equations by eliminating constants and by elimination of arbitrary functions - Definition of general, particular & complete solutions - Singular integral (geometrical meaning not required) -Solutions of first order equations in the standard forms - f (p , q) = 0, f (x , p , q) = 0, f (y , p , q) = 0, f (z , p , q) = 0, f_1(x,p) = 0 $f_2(y,q)$, z = xp+yq+f(p, q) - Lagrange's Equations - Related problems.

UNIT-IV : Laplace Transform

Laplace Transform - Definition - Basic theorems and formulas - Related Problems - First Shifting Theorem - Laplace transform of first and second derivatives - Related Problems -Laplace Transforms of Periodic functions - Related Problems.

UNIT-V : Inverse Laplace Transform

Inverse Laplace Transforms related to the above standard forms- Definition - basic Theorems and formulas - Related Problems - Solving Second Order ODE with constant Coefficient using Laplace Transforms– Related Problems.

Total Lectures Hours – 60

(11 Hours)

(12 Hours)

(15 Hours)

(10 Hours)

The students will be able to

- 1. Learn the order and degree of the Ordinary Differential Equations.
- 2. Identify some specific methods to solve the Differential Equations.
- 3. Understand the formation of Partial Differential Equations by eliminating constants and arbitrary functions.
- 4. Learn the Laplace Transforms and its related problems.
- 5. Understand the Inverse Laplace Transforms and solving second order Ordinary Differential Equations with constant co-efficient.

TEXT BOOKS

1. Narayanan S and Manicavachagam Pillay T.K. 2014. Calculus Volume III. S.Viswanathan Pvt. Ltd., Chennai.

UNIT – I Chapter 1 : Sec. : 5,6 UNIT – II Chapter 2 : Sec. : 1 to 4 UNIT – III Chapter 4 : Sec. : 1, 2, 3, 5 [5.1 to 5.4], 6 UNIT – IV Chapter 5 : Sec. : 1 to 5 UNIT – V Chapter 5 : Sec. : 6 to 11

REFERENCE BOOK(S)

- 1. Dyke P.P.G. 2001. An Introduction to Laplace Transforms and Fourier Series. Spinger Verlag, London.
- 2. Joel Schiff.J. 1999. The Laplace Transform Theory and Applications. Spinger Verlag, New York.
- 3. Khanna M.L. 1994. Differential Equation. Jaiprakash Nath, Meerut.
- 4. Rauat K.S. 2003. Differential Equation. Swarup and Sons, New Delhi.
- 5. Raisinghania M.D. 2013. Ordinary and Partial Differential Equations. S.Chand and Co. Ltd, New Delhi.

E-RESOURCES

- 1. https://www.math.ust.hk/~machas/differential-equations.pdf
- 2. https://www.researchgate.net/publication/267487772_Differential_Equations_and_Thier __Applications
- 3. https://www.researchgate.net/publication/332863667_PROBLEMS_SET_SOLUTIONS _DIFFERENTIAL_EQUATION
- 4. https://www.researchgate.net/publication/333894393_Notes_on_the_Laplace_Transform
- 5. http://www.personal.psu.edu/wxs27/250/NotesLaplace.pdf

(AUTONOMOUS)

SUNDARAKKOTTAI, MANNARGUDI- 614016 (For the Candidates admitted in the academic year 2021 - 2022)

DEPARTMENT OF MATHEMATICS

ALLIED MATHEMATICS-I (For CS & BCA)

Semester: I - AC – I: Algebra and Calculus Ins.Hrs./Week:4 **Course Credit: 3 Course Code:**

OBJECTIVES

- To learn the basic concepts in the integration
- To train the students to solve the problems in Theory of Equations •
- To introduce the basic concept of Theory of equations, Matrices and Differentiation

UNIT- I: Theory of Equations

Introduction on Theory of Equations - Relation between roots and coefficients -Transformations of Equations – Diminishing, Increasing and multiplying the roots by a constant - Problems.

UNIT-II: Matrices

Formation of Matrices - Singular Matrices - Inverse of a non-singular matrix using adjoint method - Rank of a Matrix – Consistency - Characteristic equation, Eigen values, Eigen vectors – Cayley Hamilton's Theorem (proof not needed) –Simple applications only.

UNIT-III: Differentiation

Basic Formulae on Differentiation - Maxima & Minima - Concavity, Convexity - Points of inflexion- Partial differentiation - Euler's Theorem - Total differential coefficients (proof not needed) –Simple problems only.

UNIT-IV: Integration

Basic Formulae on Integration - Evaluation of Integrals of the following Types,

 $1]\int \frac{px+q}{ax^2+bx+c} dx \quad 2]\int \frac{px+q}{\sqrt{ax^2+bx+c}} dx \quad 3]\int \frac{dx}{a+bcosx} \quad 4]\int \frac{dx}{a+bsinx}$

Evaluation using Integration by parts – Properties of definite integrals –Reduction formula 1] $\int x^n e^{ax} dx$ 2] $\int cos^n x dx$ 3] $\int sin^n x dx$.

UNIT- V: Differential Equations

Formation of Differential Equations - Linear Equations - Second order of types $(aD^2 + bD + c)$) y = F(x) where a,b,c are constants and F (x) is one of the following types (i) e^{ax} (ii) $\sin(ax) \operatorname{or} \cos(ax)(iii) x^n$, n being an integer (iv) $e^{ax} f(x)$

Total Lecture Hours – 60

1

(13 hours)

(10 Hours)

(15 Hours)

(12 Hours)

(10 Hours)

The students will be able to

- 1. Find the solutions of transformation of equation by increasing and decreasing roots.
- 2. Acquire the Knowledge of pertaining to consistency of equations of matrices, Eigen value and Eigen vector.
- 3. Understand the concept of maxima and minima and partial differential equation.
- 4. Understand the different types of Integral Equations and their properties.
- 5. Perform the problems in different methods of Differential Equations.

TEXT BOOK(S)

- 1. Manicavachagam Pillai. T.K & Others. 2010. Algebra Volume I. Revised Editions. S.V Publications, Chennai.
- 2. Manicavachagam Pillai. T.K & Others. 2008. Algebra Volume II. Revised Editions.S.V Publications, Chennai.
- 3. Narayanan.S, Manicavachagam Pillai.T.K. 2008. Calculus Volume I. S.Viswanathan Pvt. Limited, Chennai.
- 4. Narayanan.S, Manicavachagam Pillai.T.K. 2008. Calculus Volume II. S.Viswanathan Pvt. Limited, Chennai.
- 5. Narayanan.S, Manicavachagam Pillai.T.K. 2003. Differential Equations. S.Viswanathan Pvt. Limited, Chennai.

UNIT-I	Chapter 6 :	Sec. 11,15 and 17 of [1].
UNIT- II	Chapter 2 :	Sec. 1 to 16 of [2].
UNIT -III	Chapter 5 :	Sec. 1,2 of [3].
	Chapter 8 :	Sec. 1.1,1.3 and 1.6 of [3].
UNIT -I	Chapter 1 :	Sec. 7.3,8,9,11,12,13.1,13.3,13.4 of [4].
UNIT -V	Chapter 5 :	Sec. 1, 2, 3 and 4 of [5].

REFERENCE BOOK(S)

- 1. Arumugam, Issac 2007. Allied Mathematics. New Gamma Publishing House, Palayamkottai.
- 2. Khanna M.L. 2004. Differential Calculus. Jai prakash Nath and Co., Meerut.
- 3. Khanna M.L. 1994. IntegralCalculus. 19 th Edition. Jai Prakash Nath & Co. Meerut.
- 4. Sannu Rahi. 2009. Algebra. Tata McGraw Hill Publishing Company Limited, New Delhi.
- 5. Singh U.P, Srivastava R.J, Siddiqui N.H. 2003. Calculus. Dominant Publishers and Distributors, New Delhi.

E_RESOURCES

- 1. https://www.pdfdrive.com/calculus-volume-1-d33472743.html.
- 2. https://www.academia.edu/38014615/Lecture_Notes_on_Differentiation
- 3. https://www.researchgate.net/publication/323401207_ELEMENTS_OF_LINEAR_ALG EBRA_AN D_MATRIX_THEORY_Course_by_E_Kogan
- 4. https://www.researchgate.net/publication/319449049_Integral_Calculus
- 5. https://ocw.mit.edu/courses/mathematics/18-03-differential-equations-spring-2010/lecture-notes

(AUTONOMOUS)

SUNDARAKKOTTAI, MANNARGUDI- 614016

(For the Candidates admitted in the academic year 2021 – 2022)

DEPARTMENT OF MATHEMATICS

ALLIED MATHEMATICS-II (For CS & BCA)

Ins. Hrs./Week: 3

Semester: I- AC-II: Numerical Analysis 3 Course Credit: 2

Course Code:

OBJECTIVES

- To introduce the concept of algebraic and transcendental equations
- To enable the students to learn the numerical techniques of interpolation
- To inculcate numerical techniques of differentiation and integration to the students

UNIT-I: Solutions of Algebraic and Transcendental Equations

Introduction on Algebraic and Transcendental Equations - The Solution of Algebraic and Transcendental Equations -Bisection method, Steps for finding roots of equations using bisection method-Method of false position-Newton Raphson method-Theory and problems.

UNIT-II:Interpolation

Introduction on Interpolation - Errors in polynomial Interpolation - Finite differences - Formula for finding Forward differences-Formula for finding Backward differences -Some basic problems-Formula for finding Newton's forward and backward Interpolation -Problems based on Newton forward and backward interpolation -Lagrange's Interpolation formula -Theory and problems

UNIT-III: Numerical Differentiation and Integration

Basic Formulae on Differentiaion and Integration-Numerical Differentiation-Errors in numerical differentiation-Formula for finding Numerical differentiation-Problems based on Numerical differentiation-Numerical Integration: Trapezoidal Rule - Simpson's 1/3 Rule, Simpson's 3/8-Rule.

UNIT-IV: Solutions of Linear Systems

Formulation of Linear Systems - Solutions of linear systems- Theory and problems of linear systems using Gauss Elimination Method – Theory and problems of linear systems using Gauss Jacobi Method –Theory and problems of linear systems using Gauss Seidel Method.

UNIT-V: Numerical Solution of Ordinary Differential Equations (6 Hours) Formation of Ordinary Differential Equations - Method of finding Solution of ordinary

differential equations by Taylor's Series -Formula for Euler's method- Runge Kutta Second and Fourth order method, Theory and Problems.

Total Lecture Hours-45

(10 Hours)

(10 Hours)

(11 Hours)

(8 Hours)

ind problems

(A sundarakko

The students will be able to

- 1. Acquire knowledge about Algebraic and Transcendental Equations.
- 2. Knowledge of interpolation.
- 3. Enhance the knowledge on the concept of numerical differentiation and integration formulae, rules and problems.
- 4. Develop the knowledge on the theory, problems and solutions of linear systems.
- 5. Assimilate the concept of numerical solutions of ordinary differential equations.

TEXT BOOK(S)

1. Sastry S.S. 2012. A First Course in Introductory Methods of Numerical Analysis, Fifth Edition, PHI Learning Private Limited, New Delhi.

UNIT- I	Chapter 2	:	Sec.2.1, 2.2, 2.3, 2.5
UNIT- II	Chapter 3	:	Sec3.1, 3.2, 3.3(3.3.1&3.3.2), 3.6, 3.9.1
UNIT -III	Chapter 6	:	Sec.6.1, 6.2, (6.2.1), 6.4 (6.4.1, 6.4.2, 6.4.3)
UNIT -IV	Chapter 7	:	Sec.7.5, 7.5.1, 7.6
UNIT- V	Chapter8	:	8.1, 8.2, 8.4(8.4.1) & 8.5

REFERENCE BOOK(S)

- 1. Arumugam S, Thangapandi issac and Somasundaram A. 2012. Numerical Methods. Scitech Publications, Chennai.
- 2. David Kincaid, Ward Cheney. 1991. Numerical Analysis. Brooks/Cole Publishing Company, USA.
- 3. Jain M.K, Iyengar S.R.K and Jain R.K. 2001. Numerical Methods for Scientific and Engineering Computation. New Age International Private Limited, Bangalore.
- 4. Mathew J.H. 1992. Numerical Methods for Mathematics, Science and Engineering. Prentice Hall, New Delhi.
- 5. Veerarajan T and Ramachandran T. 2008. Numerical Methods with programming in C. MC Graw Hill Education, New York.

E- RESOURCES

- 1. http://www.math.iitb.ac.in/~baskar/book.pdf
- 2. http://spartan.ac.brocku.ca/~jvrbik/MATH2P20/notes.pdf
- 3. https://www.math.ust.hk/~machas/numerical-methods.pdf
- 4. https://rahulpatel121.files.wordpress.com/2018/07/s-s-sastry-introductory-methods-onumerical-analysis-2012-phi-learning-pvt-ltd.pdf
- 5. https://authors.library.caltech.edu/25061/1/NumMethChE84.pdf

(AUTONOMOUS)

SUNDARAKKOTTAI, MANNARGUDI- 614016 (For the Candidates admitted in the academic year 2021 - 2022)

DEPARTMENT OF MATHEMATICS

ALLIED MATHEMATICS-III

(For CS & BCA)

Semester: II- AC-III : Statistics

Ins. Hrs./Week: 3

Course Credit: 2

Course Code:

OBJECTIVES

- To introduce the concepts, principles tools and techniques of Statistics
- To enable students to analyse the data graphically using frequency distributions •
- To study the concept of measures of central tendency, dispersion, correlation, regression and binomial distribution

UNIT-I : Introduction on Statistics

Origin and development of statistics- Scope of statistics- Limitations of statistics- Frequency distribution in statistics - Graphical representation of statistical data.

UNIT-II : Measures of central tendency

Introduction on Measures of central tendency-Arithmetic Mean-Geometric Mean - Harmonic Mean - Median - Mode - Definitions - Properties - Merits and Demerits of Mean, Median and Mode – Problems to find Mean. Median and Mode.

UNIT-III : Measures of Dispersion

Introduction on Measures of Dispersion- Definition- Objectives- Properties- Methods of measuring dispersion- Range- Quartile deviation- Mean deviation- Standard deviation-Coefficient of dispersion.

UNIT-IV : Correlation and Regression

Introduction on Correlation–Definition-Properties of Simple Correlation – Karl Pearson's Correlation Coefficients - Limits of Correlation Coefficients - Simple Problems -Regression: Definition- Properties - Regression coefficients - Angles Between Two Lines of Regression - Simple Problems only.

UNIT-V : Binomial distribution

Introduction on Binomial distribution: Definition -Properties - Moments- Recurrence relations for the Moments - Moment generating functions - Simple problems only - Additive property of Binomial distribution.

Total Lecture Hours-45

(10 Hours)

(8 Hours)

(11 Hours)

(10 Hours)

(6 Hours)

The students will be able to

- 1. Expand knowledge about introduction to the concepts, principles, tools and techniques in statistics.
- 2. Gain knowledge on the determination of measures of central tendency.
- 3. Acquire knowledge on the determination of measures of dispersion.
- 4. Learn the skill of determination of correlation coefficient and the regression coefficient.
- 5. Assimilate the basic concept, properties and moments of binomial distribution.

TEXT BOOK(S)

1. Gupta S.C and Kapoor V.K. 2002, Fundamentals of Mathematical Statistics. Sultan Chand & Sons, New Delhi.

UNIT- I	Chapter 1	:	Sec.1.1 to 1.4
	Chapter 2	:	Sec. 2.1 to 2.3
UNIT- II	Chapter 2	:	Sec. 2.4 to 2.9
UNIT -III	Chapter 2	:	Sec. 2.13 to 2.14
UNIT -IV	Chapter 10	:	Sec. 10.1 to 10.4 (10.4.1)
	Chapter 11	:	Sec. 11.1, 11.2 (11.2.1 to 11.2.3)
UNIT -V	Chapter 8	:	Sec. 8.4 (8.4.1, 8.4.2, 8.4.7 only)

REFERENCE BOOK(S)

- 1. Freund J.E. 2001. Mathematical Statistics. Prentice Hall of India., New Delhi.
- 2. Goon A.M. Gupta M.K. and Dos Gupta B. 1991. Fundamentals of Statistics, Volume I. World Press, Calcutta.
- 3. Gupta S.P. 1994. Statistical Methods. Sultan Chand & Sons, New Delhi.
- 4. Kapil Sharma. 2011. Statistical Methods. ABO Publishers, Jaipur, India.
- 5. Pillai R.S.N and Bagavathi. 2003. Practical Statistics. S Chand & Company Ltd. New Delhi.

E- RESOURCES

- 1. https://www.math.arizona.edu/~jwatkins/statbook.pdf
- 2. http://www.cimt.org.uk/cmmss/S1/Text.pdf
- 3. https://stat.ethz.ch/~geer/mathstat.pdf
- 4. https://mason.gmu.edu/~jgentle/books/MathStat.pdf
- 5. http://fstroj.uniza.sk/kam/orsansky/pdf/eng/basicsofstatisticalmethods.pdf

(AUTONOMOUS)

SUNDARAKKOTTAI. MANNARGUDI- 614016 (For the Candidates admitted in the academic year 2021 - 2022)

DEPARTMENT OF MATHEMATICS

ALLIED MATHEMATICS-IV (For CS & BCA)

Semester: II- AC – IV : Operations Research Ins. Hrs./Week: 4 Course Credit: 3 **Course Code:**

OBJECTIVES

- To understand basics of operations research with reference to formulation, operation and research
- To provide introduction to mathematical formulation of Transportation Problem and • formulation of Assignment Problems
- To train the students in solving the Network problems and sequencing problems •

UNIT–I : Operations Research

Introduction of Operations Research - Basics of Operations Research - Operations Research & Decision making - Role of Operations Research - Mathematical Formulation of Linear Programming Problem - Graphical solution of two variables - Mathematical Formulation of Canonical form - Mathematical Formulation of Standard form - Conversion of Linear Programming Problem into Canonical and Standard Forms.

UNIT – II : Simplex Method

Simplex Method- Basic Definitions - Simplex Method Algorithm - Simplex Method for less than or equal to (<=), equal to (=) and greater than or equal to (>=) constraints – Big M Method - Big M Method Algorithm – Problems.

UNIT –III : Transportation Problem and Assignment problem

Transportation Problem -Introduction and mathematical formulation of Transportation Problem – To find the initial basic feasible solution using (i) North West Corner Method (ii) Least Cost Method (iii) Vogel's Approximation Method -To find the optimum basic feasible solution using Modified Distribution (MODI) Method - Unbalanced Transportation problem-Assignment Algorithm - Formulation of Assignment Problem - Unbalanced Assignment problem.

UNIT – IV : Sequencing Problem

Sequencing Problem– Definition - Processing of n jobs through two machines – Processing of n jobs through two machines algorithm - Processing of n jobs through three machines -Processing of two jobs through n machines - Processing of n jobs through three machines -Processing of two jobs through n machines algorithm - Related Problems in all the above.

(12 Hours)

(12 Hours)

(13 Hours)

(11 Hours)

UNIT –V : Networks

(12 Hours)

Networks – Immediate Predecessor -Immediate Successor – Dummy activity – Critical Path -Fulkerson's rule - Measure of activity –PERT computation –Earliest Time – Latest Time -Total Float – Free Float – Independent Float - CPM computation - Resource scheduling.

Total Lecture Hours – 60

COURSE OUTCOME

The students will be able to

- 1. Understand the advantages and limitations of operation research, and also understand the role operation research and solve the mathematical formulation of Linear Programming Problem.
- 2. Acquire knowledge on the simplex method and algorithms.
- 3. Understand the concepts of transportation and assignment problems, and find solution through the formulation of transportation problems.
- 4. Learn about the sequencing problems.
- 5. Assimilate the concept of Network scheduling by CPM and PERT.

TEXT BOOKS

1. Kalavathy S. 2013. Operations Research, Fourth Edition. Vikas Publishing House Pvt. Ltd, Chennai.

UNIT -I	Chapter 1	Full
	Chapter 2	: Sec. 2.1, 2.2
	Chapter 3	Full
UNIT -II	Chapter 4	Full
	Chapter 5	: Sec. 5.1, 5.2
UNIT –III	Chapter 8	: Sec. 8.1 to 8.5
	Chapter 9	: Sec. 9.3 to 9.5
UNIT –IV	Chapter 14	: Sec. 14.1 to 14.3, 14.5
UNIT –V	Chapter15	: Sec. 15.1 to 15.8

REFERENCE BOOK(S)

- 1. Hamdy A. Taha. 2005. Operations Research, 7thEdition. Prentice Hall of India Private Limited, New Delhi.
- 2. Kanti Swarup, Gupta P.K, Man Mohan. 2014. Operations Research, Fourteenth Edition. Sultan Chand & Sons, New Delhi.
- 3. Prem Kumar Gupta and Hira D.S. 1976. Operations Research An Introduction. Sultan Chand, New Delhi.
- 4. Sharma J.K. 2001. Operations Research. MacMillan India Ltd, New Delhi.
- 5. Sundaresan V, Ganapathy Subramanian. K.S and Ganesan K. 2002. Resource Management Techniques. A.R.Publications, Chennai.

E_RESOURCES

- 1. http://ebooks.lpude.in/commerce/bcom/term_5/DCOM303_DMGT504_OPERATION_RESEARC H.pdf
- 2. http://www.ggu.ac.in/download/class-note14/operation%20research07.04.14.pdf
- 3. file:///C:/Users/Commerce2/Downloads/Operations%20Research%20(%20PDFDrive%20).pdf
- 4. https://www.google.co.in/books/edition/_/6khDDAAAQBAJ?hl=en
- 5. https://www.researchgate.net/publication/333748649_Chapter_-1_Operations_Research